Learning graphical models for relational data via lattice search
نویسندگان
چکیده
منابع مشابه
Relational Graphical Models of Computational Workflows for Data Mining
Collaborative recommendation is the problem of analyzing the content of an information retrieval system and actions of its users, to predict additional topics or products a new user may find useful. Developing this capability poses several challenges to machine learning and reasoning under uncertainty. Recent systems such as CiteSeer [1] have succeeded in providing some specialized but comprehe...
متن کاملAn Introduction to Probabilistic Graphical Models for Relational Data
We survey some of the recent work on probabilistic graphical models for relational data. The models that we describe are all based upon ’graphical models’ [12]. The models can capture statistical correlations among attributes within a single relational table, between attributes in different tables, and can capture certain structural properties, such as the expected size of a join between tables...
متن کاملMetadata Enrichment for Automatic Data Entry Based on Relational Data Models
The idea of automatic generation of data entry forms based on data relational models is a common and known idea that has been discussed day by day more than before according to the popularity of agile methods in software development accompanying development of programming tools. One of the requirements of the automation methods, whether in commercial products or the relevant research projects, ...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولOrdinal Data Analysis via Graphical Models
Background. Undirected graphical models or Markov random fields (MRFs) are very popular for modeling multivariate probability distributions. A considerable amount of work on MRFs has focused on modeling continuous variables and unordered categorical variables also called as nominal variables. However, data from many real world applications involve ordered categorical variables also called as or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2012
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-012-5289-4